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Abstract. Measurement of physiological parameters
is an important tool in sport science and medicine,
especially when trying to estimate physical activity
or energy consumption. However, most approaches
still rely on sensors or markers, placed directly on
the body. In this paper we explored the observabil-
ity of selected physiological parameters using a fully
contactless, fully automatic method, that relies on
computer vision algorithms. We rely on the estima-
tion of the optical flow to calculate Histograms of
Oriented Optical Flow (HOOF) descriptors, which
we subsequently augment with the histogram of flow
magnitudes. The descriptors are fed into regression
model, which allows us to estimate energy consump-
tion and heart rate. Furthermore, with only minor
modifications, mainly related to the scale of obser-
vation we are able to detect breathing of a sleeping
person, confirming the generality of our approach.
Our method has been tested both in lab environment
and in realistic conditions, and the results confirm
that these physiological parameters are indeed ob-
servable with purely visual contact and inexpensive
equipment.

1. Introduction

Measurement of physical activity is important not
only for the determination of human health [23] but is
also valuable in professional sport training and sports
medicine. By measuring physical intensity we can
predict the energy expenditures in individual sports
[3, 16] and determine overloads, which can lead to

muscle fatigue [18].
Due to the complexity, it is almost impossible to

accurately measure the intensity of physical activity
[23, 20]. The methods that are used for measure-
ments are divided into direct and indirect calorime-
try [2] and non calorimetric techniques such as heart
rate monitors, pedometers and accelerometers [14].
The latter are widely used in research because they
are easy to use [20], but their accuracy is question-
able [23]. They are also impractical, since they re-
strict the movement of athletes and thus indirectly
affect the result.

Because of these limitations, researchers have de-
veloped non-contact methods of intensity estimation
based on the analysis of video [3, 16, 20, 17, 15].
Some of these methods use metabolic models, but
none of them is using the motion field, derived from
video.

We can reasonably expect that the full motion field
gives the most accurate description of the physical
activity. Our long-term goal is a set of methods and
hardware devices to measure various physiological
parameters from visual observations, physical activ-
ity being only one of them. However, our first task,
which is at the core of this paper, is the analysis of
observability of physiological parameters. We de-
note the parameters observable if there is non-zero
(positive) correlation between our estimation of a
parameter, based on motion features obtained from
video and the values, obtained by other methods that
are considered to be reliable for measurement for a
particular parameter.



In Section 2 we present the methods, developed
for non-contact measurement of physical activity.
Next, we describe our proposed framework, together
with its theoretical basis. The experiments are de-
scribed in Section 4. At the end of the paper we
present the experimental results and the future work.

2. Related work

Studies of contactless measurement of activity are
rare, since most researchers are using contact mea-
surement devices, for example [11]. In this work they
were estimating energy consumption with regression
models trained on multiple features from wearable
sensors.

Nevertheless, some researchers tried to assess the
energy consumption with contactless movement sen-
sors, such as the Kinect [15]. Contactless sensors
were also addressed in [20, 17], but the intensity was
determined by the subjective scale.

In work [16], the authors proved that we can esti-
mate energy difficulty of soccer with video analysis
in conjunction with the metabolic model. They pro-
cessed video frames and followed the player through-
out the game. By tracking player movement they
classified it in each category and calculated energy
consumption based on physiological characteristics.
However, this approach is possible only if majority of
physical activity consists of cyclic motion (running).

A similar approach to measuring activities is pre-
sented in [3]. Authors determined aerobic power
consumption for essential activities carried out in
tennis and thus built a mathematical model of the
metabolic process. They were able to determine the
profile of activities on a video, and thus indirectly
evaluate energy consumption.

The problem in these approaches are the limits of
metabolic models – they are limited to a certain type
of activity or sport. Additionally, the studies used of-
fline analysis of videos, aimed at determining the to-
tal energy consumption during the game rather than
real-time evaluation of this important physiological
parameter. Finally, human annotation is expensive
and slow. The automatic activity detection may alle-
viate this, but at a cost of introducing possibly signif-
icant sources of additional error and uncertainty.

3. Proposed method

The video camera is completely contactless de-
vice and therefore provides totally non-intrusive, op-
tical way of measurement. Additionally, advances in

technology now allow acquisition of high-definition
videos, at high frame rates. Finally, optics allow ex-
treme flexibility and observation from very large dis-
tance, unlike any other kind of sensor.

3.1. Movement model and features

To obtain detailed measurements of motion, we
calculate the motion of each pixel – the optical flow.
Under specific conditions (stable illumination) it rep-
resents a good approximation for the movement of
the object’s surface. Unfortunately, traditional meth-
ods of optical flow are sensitive to noise, discontinu-
ity and changes in brightness of the object [4]. Ad-
ditionally, there is a problem of correct estimation
of the amplitude of movement due to parallax phe-
nomenon [22]—objects that are further away from
the camera exhibit lower flow amplitude for the same
physical motion.

We decided that we will represent the movement
from video recordings with histograms of oriented
optical flow (HOOF) [7] to improve robustness. Rea-
soning behind that choice is illustrated by Figure 1 –
HOOF features measure amount of motion in vari-
ous directions and therefore they should accurately
represent the motion of an athlete on a treadmill, as
follows.

(a) (b)

Figure 1: (a) Components of an athlete motion in
world coordinates and illustration of their mappings
onto HOOF features. For details, see text. (b) 150th

frame of the first test from first series of videos. The
treadmill speed in this case was 6 kmh−1.

Ideally, the movement of the particle with mass m
can be decomposed into the components of velocity
in the vertical and horizontal direction. Movement
in the direction of ~vy+ represents the largest effort,
because a muscle must defy the force of gravity to
perform work. Conversely, it can move in the direc-
tion of ~vy− relatively effortless. Movement in direc-
tions ~vx+ and ~vx− is somewhere in between by the



invested energy. We can not accurately assess the
work belonging to the movement in any direction,
but we can learn it using HOOF features.

Following results in the realistic environment (a
squash court), we decided to augment HOOF de-
scriptor with the histogram of the absolute flow am-
plitudes, which significantly improved observed cor-
relation between reference measurement and pre-
dicted values. In our implementation, we use
NHOOF = 60 segment HOOF feature vector,
roughly representing 60 directions. This was later
augmented with Nampl = 60 amplitude bins,
roughly corresponding to flow amplitudes in 0.5-60
pixel range, yielding 120-dimensional descriptor per
each person and frame. Amplitude cut-off at 0.5
pixel was employed to get rid of noise in absence of
motion.

3.2. Optical flow algorithm

Optical flow is calculated in full frames, but can
be, depending on the situation, cropped with appro-
priate bounding box. For computation of the opti-
cal flow we have chosen Farnebäck’s dense flow al-
gorithm [9]. The main reason for this choice is the
availability of its implementation in the OpenCV li-
brary.

3.3. Models

Based on the nature of the selected features we
have chosen to employ models, based on support
vector machines (SVM) [5]. Thus, despite the large
number of features, we ensured a relatively short
learning time and a degree of robustness. Based
on recommendations from [13] we used a non-linear
kernel.

4. Experiments

We present multiple experiments in varied en-
vironments, addressing measurement of instanta-
neous energy consumption, heart rate (considered the
proxy for energy consumption) and breathing. In
all cases, physiological parameters eem(t), hr(t),
breathing(t) were predicted from one optical flow
image via feature vector at the time X(t − lag),
where lag is the hypothesized delay between the mo-
ment certain activity is visible, and the moment it
gets expressed in the physiological parameter. No
other temporal modeling was used, except for final
smoothing of predictions. This resulted in very sim-
ple, real-time model, which can be extended with

temporal modeling, should the need arise.

4.1. Treadmill experiment

The first set of experiments was performed in
physiological laboratory, with subject running on a
treadmill in the presence of the operator—a doctor,
who determined the intensity and duration of work-
load. Heart rate and energy expenditure were mea-
sured for an athlete (age: 26 years, height: 177 cm,
weight: 79.1 kg, V O2max: 3705ml/min). Energy
expenditure was measured using indirect calorime-
try with Cosmed CPET Metabolic Cart. System al-
lows breath-by-breath measurement [2]. We used
Hans Rudolph face mask with prescribed minimal
VD (dead space).

4.1.1 Data acquisition

We filmed the treadmill from the two different an-
gles: the side-view and the back-view. The slope of
the treadmill was from 1.5% to 2%. We filmed in
480× 640 resolution with a 30 fps speed. An exam-
ple of a recording is shown in Figure 1(b).

4.1.2 Procedure

We have made two series of tests with 20 minutes
between them. Physiological parameters were sam-
pled every 5 s. In the first series we made 8 tests,
where every test lasted for 2 minutes. The treadmill’s
speed was increased by 1 kmh−1 every test. First
test had a speed of 6 kmh−1 and the last a speed of
13 kmh−1. In the second series we made 3 tests. Ev-
ery test lasted for 5 minutes. Treadmill’s speeds were
7 kmh−1, 10 kmh−1 and 13 kmh−1. The first set
was used for the acquisition of samples for learning,
and the other for testing.

4.1.3 Processing

We then calculated the optical flow [9] with the help
of tracking algorithm described in 4.2. For opti-
cal flow we used the following parameters: pyra-
mid scale 0.5, number of pyramid layers 3, averaging
window size 15, number of iterations at each pyramid
level 3, size of the pixel neighborhood 5 and standard
deviation of the Gaussian 1.2. An example of the ob-
tained optical flow is shown in Figure 2.

HOOF features were calculated according to the
method described in [7].



Figure 2: The optical flow for 150th frame of the
first test from the first series of shots with color cod-
ing legend in the bottom left corner. We are using a
standard color coding based on [1]. The maximum
amplitude of the optical flow in this figure is 17 px.

The models have been generated with support vec-
tor regression ε-SVR in LIBSVM library, which is
more specifically described in [5]. We used RBF ker-
nel that takes the form (1). Kernel and regression pa-
rameters were optimized with grid search approach
described in [13]. We needed to determine regres-
sion penalty parameter C > 0, loss function param-
eter ε > 0, and kernel coefficient γ.

K(xi,xj) = e
−γ

∥∥∥xi − xj

∥∥∥2 (1)

We have built 8 models, divided into two cat-
egories: hr models, which predict heart rate and
eem models, which provide the energy expenditure
in kcal/min.

The models are further divided according to the
type of input data. We used a side-view camera (ab-
breviation sv), and the back-view camera (abbrevia-
tion bv). We extended our experiment by incorpo-
rating lag between measurements and reference val-
ues. With models, marked as lag, we checked the
proposed time delay between excitation and physio-
logical response.

In experiments with mixed abbreviations, we built
the model on the data from the one view, and tested
it on the another view.

Additional mixed model experiment was gener-
ated with data from both cameras, side-view and
back-view. Recordings from both cameras were con-
catenated and cropped.

4.2. Object tracking

In many sports, there are a number of players par-
ticipating and therefore they are all visible in each

video frame. Necessary component of such sys-
tem will be a tracking functionality, therefore we
ran a tracker on treadmill video to check how the
method performs if the position of the player is non-
stationary and obtained by the tracking algorithm.
Results which included tracking step have tr abbre-
viation.

For object tracking we used KCF tracking frame-
work implemented in OpenCV because it gave us
best results. The tracking method is an implemen-
tation of [12] which is extended to KCF with color-
names features. Extension is based on [8].

Default parameters for tracking were: Gaussian
kernel bandwidth 0.2, linear interpolation factor for
adaptation 0.075, regularization 0.01, max patch size
6400, spatial bandwidth 0.0625, resize features acti-
vated to improve the processing speed, training coef-
ficients splitted into two matrices, wrapping around
the kernel values not activated, non-compressed de-
scriptors in gray, compressed descriptors in color-
names, the PCA method to compress the features ac-
tivated, compressed size 2 and compression learning
rate 0.15.

With KCF tracking framework tracked objects
were defined with bounding box. The region of in-
terest, where bounding box was calculated, was set
on the first frame of every recording. Bounding box
was used to crop the region of interest from optical
flow image of particular frame and calculated HOOF
features on it. If tracker couldn’t find an object—it
disappeared from our view or there were technical
difficulties to calculate correspondences—bounding
box didn’t exist and all histogram bins were there-
fore zero.

Finally, cameras may shake, if held manually.
We simulated this scenario by artificially introduc-
ing random small displacements and rotation into
the video. Every frame was transformed with ran-
dom Euclidean transformation, where translation
was limited to 4% of frame size and rotation to
0.13 rad. Random transformations were smoothed
with Kalman filter (2), where the variance of process
noise was 2, the variance of model noise 1024 and
variance for posteriori error covariance 2. The track-
ing algorithm was run after this motion noise was
added, and these results are denoted by sh abbrevia-
tion.

Comparison between the measured physiological
parameters (5 s) sampling, and our predictions at
30 fps required interpolation of physiological param-



eters, which was performed in Matlab.

4.3. Examining the lag in physiological response

We explored the problem of the lag in physiolog-
ical response as well. Based on Figure 3, we found
out that between the change in speed of the treadmill
and change of the selected physiological parameter
there is a delay. This is perfectly acceptable due to
the nature of physiological processes. We found out
that offset for heart rate is amounted to 15 s and for
energy expenditure to 55 s. Offset was included in
models with the lag abbreviation.

4.4. Denoising the results

Because of the noisy output of models, we had to
filter them with the Kalman filter [10]. It is repre-
sented by the equation in state space, where state is
the state of speed v and acceleration a with unknown
input parameters speed vn and acceleration an. The
initial velocity and acceleration were 0. Variance of
process noise for all models was 0.04. Variance of
model noise was 456.13. Due to the unknown initial
values, we used variance 456.13 for the posteriori er-
ror covariance.

[
v(k + 1)
a(k + 1)

]
=

[
1 1
0 1

] [
v(k)
a(k)

]
+

[
1
0

] [
vn(k)
an(k)

]
(2)
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Figure 3: The figure shows the delay of physiological
parameters response based on the treadmill speed.

4.5. Real-world squash experiment

The model squash match, consisting of only one
set was filmed in 1920× 1080 resolution with Rasp-
berryPi and RaspiCam as a recording device. The
heart rate was measured for both players using wear-
able sensors. First player (age: 45 years, height:

176 cm, weight: 68 kg, gender: male, max heart
rate: 179 bpm, resting heart rate: 45 bpm) was used
for training. Second player (age: 17 years, height:
178 cm, weight: 66 kg, gender: male, max heart rate:
203 bpm, resting heart rate: 50 bpm) was used for
testing the model.

To obtain player bounding boxes, tracking [8] was
employed, however the tracker was re-set once each
3 seconds by human operator to guarantee reasonable
tracking results. We had to scale our frames to 25%
specifically for tracking, and remap the result to the
original resolution later.

Poor initial performance with plain HOOF de-
scriptors in a squash game prompted an extension
of HOOF descriptor with amplitude histogram. This
necessitated additional scaling step before building
SVM model, where all features were scaled to the
range [−1, 1]. Additionally, measured heart rate was
first filtered with the Gaussian kernel of size 6 and
variance 16 to prevent training on overly noisy data.
It was then individualized to each player by calcu-
lating energy expenditure based on basic equation
from [6]. Predicted results from model were then
converted back to heart rate of the other player us-
ing the same equation. This allowed us to train the
model on one player, and test it on another.

Kalman filter was not used for squash experi-
ments. Because we used Gaussian kernel for filtering
in data preprocessing, it was also used for filtering
model output. The size of kernel was 6 samples and
variance was 16.

4.6. Breathing detection

To show the generality of the proposed concept,
we tested it on a loosely related problem of breath-
ing detection. Different from sport applications, the
use cases for such applications would be mainly in
medicine, care for the elderly, or surveillance. The
concept of optical measurement allows us to perform
such measurements from great distance, as long as
optical system is able to provide us with the stable
image.

There are already many vision-based patient mon-
itoring applications [19], one of which is also sleep
apnea monitoring. As of [19] there are two main ap-
proaches to monitoring this disorder. One of these
is tracking movement of chest region. However,
our primary motivation was to test our proposed ap-
proach with minimum modifications on a different
problem.



4.6.1 Method

For this purpose we recorded a video of a male sub-
ject, age 42, with history of diagnosed sleep apnea,
when sleeping (recording started at 4:45 in the morn-
ing and lasted about 30 minutes, part of which was
used). The illumination was provided by 60W near-
infrared (NIR) LED illuminator, and recording was
done again with RaspberryPi and RaspiCam (NIR
version, without the NIR blocking filter). Filming
was done in resolution at 25 fps which were reduced
to 10 fps in video pre-processing to increase signal to
noise ratio in calculated optical flow (breathing is a
slow process). For the recording M12 lens with focal
length of 1.8mm was used (wide angle). Recording
apparatus was approximately 2 meters from the ob-
served subject.

4.6.2 Ground truth

To obtain reference values for breathing detection,
sound was recorded as well using the audio mod-
ule for RaspberryPi, with the microphone placed at
close distance to the subject. Sound was synchro-
nized to the video, and processed to obtain breathing
detections based on high sound amplitude. By man-
ual examination, it was established that the detec-
tions corresponded to the actual breathing, as heard
on the sound track. Detections were subsampled to
10 samples per second, to coincide with the video
frame rate.

4.6.3 Processing

To detect breathing, we observed a section of the
subject’s back (he was lying face down). That sec-
tion, measured 384×512 pixels and covered approx-
imately 2/3 of the subject’s back. This was the only
part of the image that was involved in any computa-
tion.

Two sections of video in duration of 5 minutes
each were selected for training and testing, respec-
tively. The training and testing were done using C-
SVC classifier and RBF kernel with parameter opti-
mization. To determine the performance, we formu-
lated the problem as a binary classification problem
with classes ”no breathing” and ”breathing”.

5. Results

All energy consumption and heart rate models
were validated on previously described test samples.

For comparison between the different models we
have chosen validation measures: correlation coef-
ficient (CORR), relative absolute error (RAE) and
root relative square error (RRSE) [21].The higher the
value of the CORR the better, with RAE and RRSE
is other way around.

Models were also evaluated with cross testing.
This testing was done only by the type of input
data—side-view or back-view. sv models, that were
made with learning samples from side-view cam-
era were first tested with testing samples from side-
view camera and then with back-view camera. Here-
after tests with input data from side-view camera are
marked with sv in brackets and tests with input data
from back-view camera are marked with bv in brack-
ets.

5.1. Treadmill results

As can be seen in the Table 1, we get relatively
poor results in the prediction of heart rate.

Model CORR RAE (%) RRSE (%)

hr-sv(sv) 0.90 75.42 76.66
hr-sv(bv) −0.66 104.61 110.17
hr-sv-lag(sv) 0.93 74.37 75.51
hr-sv-lag(bv) −0.87 138.60 136.62
hr-bv(sv) 0.83 311.95 295.66
hr-bv(bv) 0.88 81.07 79.27
hr-bv-lag(sv) 0.49 84.71 89.40
hr-bv-lag(bv) 0.91 79.15 76.93
eem-sv(sv) 0.87 47.08 49.75
eem-sv(bv) −0.75 109.27 117.62
eem-sv-lag(sv) 0.92 38.15 40.18
eem-sv-lag(bv) −0.74 121.86 121.88
eem-bv(sv) 0.61 94.92 95.92
eem-bv(bv) 0.85 44.51 56.24
eem-bv-lag(sv) 0.86 56.60 68.61
eem-bv-lag(bv) 0.90 45.51 49.50

Table 1: The results of the initial model evaluations
with cross testing. For each model, we calculated
the correlation coefficient (CORR), relative absolute
error (RAE) and root relative square error (RRSE).

In terms of using different view angles, we get
best results for side-view. We assume that this is
due to the fact that with a back-view camera (without
any cropping) we also recorded the movement of the
operator, who is not visible in side-view recordings.
Despite the fact that the HOOF features get rid of the
noise of the optical flow, the movement of the opera-
tor is intensive enough to be able to influence the re-
sults. Worse results for back-view camera could also
indicate that we get less descriptive features from it.



The results of the models, where we assume the
delay between excitation and response are better,
which indicates that the assumption is justified.

Considering cross testing we can see, that all mod-
els produce poorer results if we test them with data
from different viewing angle.

The best results were obtained in the prediction of
the energy expenditure (EEM). Output signals of the
best results for the prediction of energy expenditure
and heart rate are presented in Figure 4. The curves
of the results have the same form because they are
correlated physiological parameters.
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Figure 4: The best results for prediction of energy
expenditure and heart rate when validating the mod-
els. The figure shows the output of models eem-sv-
lag(sv) and hr-sv-lag(sv) and the actual value of en-
ergy expenditure and heart rate.

5.2. Mixed-view experiments

As in 5.1, when comparing models with different
physiological parameters in Table 2, heart rate mod-
els produce worse results. Lag models are better than
normal models and best result is still produced by
lagged model, which predicts energy expenditure.

The main difference in mixed models can be seen,
when comparing cross tests. If we compare results
from Table 1 and 2, we can see that results, when
testing models with data from different viewing an-
gle as they were trained, are significantly better. This
results indicate that better models could be trained
with recordings from different viewing angle.

5.3. Treadmill with tracking

Results of models with enabled tracker are repre-
sented in Table 3. If we compare them with results
of initial models in Table 1, the mean absolute differ-
ence of RRSE between them is 28%. We can assume

Model CORR RAE (%) RRSE (%)

hr-mixed(sv) 0.89 67.18 68.17
hr-mixed(bv) 0.88 59.84 61.89
hr-mixed-lag(sv) 0.92 65.24 66.44
hr-mixed-lag(bv) 0.91 57.75 60.31
eem-mixed(sv) 0.85 45.90 53.89
eem-mixed(bv) 0.84 57.44 62.78
eem-mixed-lag(sv) 0.90 44.19 46.09
eem-mixed-lag(bv) 0.89 56.70 55.04

Table 2: The results of the mixed model evaluations
with cross testing. For each model, we calculated
the correlation coefficient (CORR), relative absolute
error (RAE) and root relative square error (RRSE).

that this is due to the fact that tracker does not track
selected object perfectly. In some cases it cannot find
object, or detects wrong object. It can also track only
part of the object. This anomalies can affect calcula-
tion of physiological parameters.

The mean absolute difference of RRSE between
normal tracking models and models with shaking
video is about 30%. Results are worse with videos
that incorporate shaking (motion noise), but this is
still acceptable, because the selected tracker can sta-
bilize our video and improve results.

5.4. Squash match experiments

If we compare Table 1 and Table 4, we can see that
result for squash model is not far behind one of the
best results in initial models, despite the fact that we
used different subjects for training and testing.

If we further explore our model from realistic data,
we can see in Figure 5 that predicted working point is
about 7 bpm lower. The reason could be that training
data is extracted only from one subject. The second
reason could be imperfections of used equation from
[6]. Despite these errors a coarse prediction is still
possible, even if we don’t train the algorithm on the
same subject.

5.5. Breathing experiment

For breathing detection, which was formulated as
a classification problem, we used standard metrics
for evaluation of two-class classification problems.
With ”breathing” considered the ”true” value, and
”not breathing” the ”false” we get the following re-
sults: false positive rate, FPR = 13%, true positive
rate, TPR = 87%, false negative rate, FNR = 26%,
true negative rate, TNR = 74%.



Model CORR RAE (%) RRSE (%)

hr-sv-tr(sv) 0.93 90.82 86.55
hr-sv-tr(bv) −0.18 133.17 145.74
hr-sv-lag-tr(sv) 0.96 91.57 86.72
hr-sv-lag-tr(bv) −0.11 108.99 124.40
hr-bv-tr(sv) −0.55 132.25 146.66
hr-bv-tr(bv) 0.89 116.38 111.78
hr-bv-lag-tr(sv) −0.62 131.09 140.59
hr-bv-lag-tr(bv) 0.91 118.69 113.24
eem-sv-tr(sv) 0.90 41.55 45.25
eem-sv-tr(bv) −0.34 135.25 141.63
eem-sv-lag-tr(sv) 0.94 31.66 37.05
eem-sv-lag-tr(bv) 0.65 126.00 130.04
eem-bv-tr(sv) −0.44 107.47 107.91
eem-bv-tr(bv) 0.91 53.21 52.92
eem-bv-lag-tr(sv) −0.68 110.55 113.64
eem-bv-lag-tr(bv) 0.93 41.57 51.53
hr-sv-tr-sh(sv) 0.92 90.39 87.15
hr-sv-tr-sh(bv) 0.84 90.98 112.00
hr-sv-lag-tr-sh(sv) 0.95 88.86 86.99
hr-sv-lag-tr-sh(bv) −0.10 111.46 118.79
hr-bv-tr-sh(sv) 0.83 286.16 268.48
hr-bv-tr-sh(bv) 0.87 113.11 111.15
hr-bv-lag-tr-sh(sv) 0.89 293.45 275.83
hr-bv-lag-tr-sh(bv) 0.87 114.98 113.90
eem-sv-tr-sh(sv) 0.90 50.18 59.92
eem-sv-tr-sh(bv) 0.89 119.57 128.17
eem-sv-lag-tr-sh(sv) 0.93 51.47 56.55
eem-sv-lag-tr-sh(bv) −0.08 135.85 133.27
eem-bv-tr-sh(sv) 0.75 179.11 172.30
eem-bv-tr-sh(bv) 0.90 52.85 54.43
eem-bv-lag-tr-sh(sv) 0.91 175.29 171.63
eem-bv-lag-tr-sh(bv) 0.94 50.02 48.93

Table 3: The results of the tracker model evaluations
with cross testing. For each model, we calculated
the correlation coefficient (CORR), relative absolute
error (RAE) and root relative square error (RRSE).

Model CORR RAE (%) RRSE (%)

hr-bv-lag-tr-sq 0.45 68.65 54.24

Table 4: The results of the squash match evaluation.
For model, we calculated the correlation coefficient
(CORR), relative absolute error (RAE) and root rela-
tive square error (RRSE).

6. Discussion

In this paper we explored the observability of se-
lected physiological parameters using a fully con-
tactless and automatic method, that relies on com-
puter vision algorithms. We combined HOOF fea-
tures with SVM regression and classification to pre-
dict energy expenditure, heart rate, and breathing of
the observed subject. We supplemented those fea-
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Figure 5: Result for prediction of heart rate when
validating the models. The figure shows the output
of model hr-bv-lag-tr-sq and the actual value of heart
rate.

tures with a set of amplitude histograms to better rep-
resent amplitude of motion in our feature data.

Results show that the parameters are indeed ob-
servable, as we suspected. It is important to note that
this was an observability study, which is the first step
towards designing robust and accurate methods for
measuring the parameters in question. Reason that
this research is preliminary are as follows.

Methodology. We did not aim to find the best
methodology to measure energy expenditure via
computer vision. Based on the obtained results, we
merely concluded that such measurements are pos-
sible. Furthermore, except for the smoothing, we
do not incorporate any temporal dynamics into our
model.

Groud truth. The reference methods that we used
for comparison with our predictions suffer from nu-
merous and documented problems. Heart rate is poor
proxy for energy expenditure and is not used for that
purpose in scientific research. It is widely used in
training, since it is the only practical option for use
in realistic sport environment, the other being bulky
indirect calorimetry backpack with face mask.

Our future work will therefore consist of formal-
ization and optimization of our augmented HOOF
descriptor. We will explore SVM kernels that are bet-
ter suited for histogram-type descriptors, and will in-
troduce temporal dynamics into the model. Finally,
we will focus on verification of our approach using
the most accurate reference values we can obtain in
the field of sport physiology and medicine.
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